Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(10): 7411-7423, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412617

RESUMO

The ability to control and manipulate semiconductor/bio interfaces is essential to enable biological nanofabrication pathways and bioelectronic devices. Traditional surface functionalization methods, such as self-assembled monolayers (SAMs), provide limited customization for these interfaces. Polymer brushes offer a wider range of chemistries, but choices that maintain compatibility with both lithographic patterning and biological systems are scarce. Here, we developed a class of bioinspired, sequence-defined polymers, i.e., polypeptoids, as tailored polymer brushes for surface modification of semiconductor substrates. Polypeptoids featuring a terminal hydroxyl (-OH) group are designed and synthesized for efficient melt grafting onto the native oxide layer of Si substrates, forming ultrathin (∼1 nm) monolayers. By programming monomer chemistry, our polypeptoid brush platform offers versatile surface modification, including adjustments to surface energy, passivation, preferential biomolecule attachment, and specific biomolecule binding. Importantly, the polypeptoid brush monolayers remain compatible with electron-beam lithographic patterning and retain their chemical characteristics even under harsh lithographic conditions. Electron-beam lithography is used over polypeptoid brushes to generate highly precise, binary nanoscale patterns with localized functionality for the selective immobilization (or passivation) of biomacromolecules, such as DNA origami or streptavidin, onto addressable arrays. This surface modification strategy with bioinspired, sequence-defined polypeptoid brushes enables monomer-level control over surface properties with a large parameter space of monomer chemistry and sequence and therefore is a highly versatile platform to precisely engineer semiconductor/bio interfaces for bioelectronics applications.


Assuntos
Polímeros , Polímeros/química , Adsorção , Propriedades de Superfície
2.
ACS Appl Mater Interfaces ; 15(1): 2020-2029, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534025

RESUMO

We report a method for the directed self-assembly (DSA) of block copolymers (BCPs) in which a first BCP film deploys homopolymer brushes, or "inks", that sequentially graft onto the substrate's surface via the interpenetration of polymer molecules during the thermal annealing of the polymer film on top of existing polymer brushes. By selecting polymer "inks" with the desired chemistry and appropriate relative molecular weights, it is possible to use brush interpenetration as a powerful technique to generate self-registered chemical contrast patterns at the same frequency as that of the domains of the BCP. The result is a process with a higher tolerance to dimensional and chemical imperfections in the guiding patterns, which we showcase by implementing DSA using homopolymer brushes for the guiding features as opposed to more robust cross-linkable mats. We find that the use of "inks" does not compromise the line width roughness, and the quality of the DSA as a lithographic mask is verified by implementing a robust "dry lift-off" pattern transfer.

3.
J Am Chem Soc ; 143(35): 14106-14114, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34448579

RESUMO

The hexagonally close-packed (HCP) sphere phase is predicted to be stable across a narrow region of linear block copolymer phase space, but the small free energy difference separating it from face-centered cubic spheres usually results in phase coexistence. Here, we report the discovery of pure HCP spheres in linear block copolymer melts with A = poly(2,2,2-trifluoroethyl acrylate) ("F") and B = poly(2-dodecyl acrylate) ("2D") or poly(4-dodecyl acrylate) ("4D"). In 4DF diblocks and F4DF triblocks, the HCP phase emerges across a substantial range of A-block volume fractions (circa fA = 0.25-0.30), and in F4DF, it forms reversibly when subjected to various processing conditions which suggests an equilibrium state. The time scale associated with forming pure HCP upon quenching from a disordered liquid is intermediate to the ordering kinetics of the Frank-Kasper σ and A15 phases. However, unlike σ and A15, HCP nucleates directly from a supercooled liquid or soft solid without proceeding through an intermediate quasicrystal. Self-consistent field theory calculations indicate the stability of HCP is intimately tied to small amounts of molar mass dispersity (D); for example, an HCP-forming F4DF sample with fA = 0.27 has an experimentally measured D = 1.04. These insights challenge the conventional wisdom that pure HCP is difficult to access in linear block copolymer melts without the use of blending or other complex processing techniques.


Assuntos
Resinas Acrílicas/química , Transição de Fase , Temperatura de Transição
4.
ACS Macro Lett ; 9(6): 849-854, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35648517

RESUMO

The interplay between polymer-polymer and polymer-solvent interactions as well as interactions that impose secondary structures determines the conformation of polymer chains in dilute solution. Polypeptoids-poly(N-substituted glycines) have been shown to form helical secondary structures primarily driven by steric interactions from chiral, bulky side chains, while polypeptoids with a racemic mixture of the same side chains lead to unstructured coil chains with a shorter Kuhn length. Small-angle neutron scattering (SANS) of the polypeptoids in dilute solution reveals that the helical polypeptoids are only locally stiffer than the coil chains formed from the racemic analogue, but exhibit overall flexibility. We show that chain conformations of both helical and coil polypeptoids (in terms of radius of gyration, Rg) are insensitive to solvent quality (parametrized by the second virial coefficient, A2). Potential effects from the bulky, chiral/racemic side chains dominating chain conformations are excluded by comparison with an achiral polypeptoid lacking side chain chirality. The specific interactions between polypeptoid segments are likely dominating the chain conformations in this type of polypeptoids as opposed to polymer-solvent interactions or energetic contributions from the helical secondary structure.

6.
J Phys Chem A ; 123(35): 7558-7566, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31449416

RESUMO

A series of rubrene derivatives were synthesized and the influence of the side group in enhancing photo-oxidative stability was evaluated. Photo-oxidation half-lives were determined via UV-vis absorption spectroscopy, which revealed thiophene containing derivatives to be the most stable species. The electron affinity of the compounds did not correlate with stability as previously reported in literature. Our work shows that shorter excited-state lifetimes result in increased photo-oxidative stability in these rubrene derivatives. These results confirm that faster relaxation kinetics out-compete the formation of reactive oxygen species that ultimately degrade linear oligoacenes. This report highlights the importance of using molecular design to tune excited-state lifetimes in order to generate more stable oligoacenes.

7.
Int J Pharm ; 543(1-2): 121-129, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29597033

RESUMO

Nevirapine (NVP) is recommended by WHO as the antiretroviral treatment to prevent HIV passing from mother to child. However, the once-daily oral administration results in poor patient compliance, and a long-acting injectable form of NVP is desirable. Using single-crystal X-ray diffraction and other characterization methods, we demonstrated NVP can form crystalline inclusion complex (IC) with the biodegradable hydrophobic poly(ε-caprolactone) (PCL), and investigated the potential of the NVP-PCL IC microparticles as a long-acting injectable solid form. Compared with pure NVP crystals and NVP/polylactide microparticles, the NVP-PCL IC crystals showed significantly decreased solubility and slower dissolution rate, making it more suitable to be developed to achieve sustained-release profiles. In addition, the NVP-PCL IC microparticles with an average diameter below 10 µm can be conveniently prepared by spray drying and are found to be easily injectable through a 25G needle. These results demonstrated the possibility of using drug-polymer IC microparticles as long-acting injectable forms, providing a new approach to design sustained-release drug products.


Assuntos
Fármacos Anti-HIV/química , Nevirapina/química , Poliésteres/química , Cristalização , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Injeções , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...